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Abstract. Transfer learning has shown promising results in leveraging loosely
labeled Web images (source domain) to learn a robust classifier for the unlabeled
consumer videos (target domain). Existing transfer learning methods typically
apply source domain data to learn a fixed model for predicting target domain data
once and for all, ignoring rapidly updating Web data and continuously changes
of users requirements. We propose an incremental transfer learning framework,
in which heterogeneous knowledge are integrated and incrementally added to
update the target classifier during learning process. Under the framework, im-
ages (image source domain) queried from Web image search engine and videos
(video source domain) from existing action datasets are adopted to provide static
information and motion information of the target video, respectively. For the im-
age source domain, images are partitioned into several groups according to their
semantic information. And for the video source domain, videos are divided in
the same way. Unlike traditional methods which measure relevance between the
source group and the whole target domain videos, the group weights in this paper
are treated as latent variables for each target domain video and learned automat-
ically according to the probability distribution difference between the individual
source group and target domain videos. Experimental results on the two chal-
lenging video datasets (i.e., CCV and Kodak) demonstrate the effectiveness of
our proposed method.

1 Introduction

The rise of personal hand-held cameras and video sharing websites such as YouTube
has resulted in massive amounts of consumer videos online. The ability to rapidly ana-
lyze and annotate the event from these unconstrained videos is a challenging computer
vision task due to three main issues. First, these videos are generally captured by mobile
devices at random and thus containing considerable camera motion, occlusion, cluttered
background, and large intraclass variation, making the videos within the same type of
event appear different and less discriminant. Second, the labels of these videos are usu-
ally meaningless due to users’ random noting and subjective understanding, posing a
great challenge to traditional learning methods which requires sufficient labeled videos
to learn robust event classifiers. Third, the data on the internet updated every second,
and fixed model trained on the pre-defined data may not work well for predicting new
coming data. How to acquire sufficient knowledge while freeing the labor from bur-
densome annotation process is an important problem for event annotation in consumer
videos.



2 Han Wang, Hao Song, Xinxiao Wu, Yunde Jia

Target Classifier 3 

Web images 

Action videos 

Target Classifier 2 

Web images 

Action videos 

Source Domain 

Target Domain 

Target Classifier 1 

Web images 

Action videos 

Incremental Learning 

Fig. 1. Illustration of our framework.

Many researchers have tried to seek other sources of labeled data and transfer the
related knowledge from these data to videos [1][2][3][4]. Most of previous work focuses
on learning a fix model from a set of predefined images or videos (source domain) to
predict the events in the complex videos (target domain). It is natural to ask if such
fixed models would work well in the scenario that the Web data changes with each
passing day. To deal with the fast updating of the source data, we propose a novel
incremental learning framework for consumer video annotation. Under the framework,
the classifiers learned on the source domains can be incrementally updated to capture
the changes of both source and target domains and thereby facilitate the annotation task
of real-world videos.

In this paper, we propose to acquire the source knowledge from the increasingly
mature Web image search engines as well as existing labeled action datasets (e.g. KTH
[5] and Weizmann [6]), which is based on the following observations: (1) the duration
of videos on the Web are relatively long, so it will take more time and labor to analyze
a video than an image. Obviously, it is more efficient to query images from the Web
than directly search videos from the Web; (2) Besides the static information provided
by Web images, temporal information provided by action videos is also beneficial for
recognizing some key actions in consumer videos; (3) The action videos in the two
datasets are relatively simple (the time spend on these videos is relatively less ) but
can provide basic human action information (e.g., running, waving) for complex social
event; (4) All the action video datasets are well labeled by researchers and do not need
additional labeling efforts.
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Though it is beneficial to learn from Web images and action datasets, noise knowl-
edge of little relevance with consumer videos still exists due to random noting and
subjective understanding. To handle this negative transfer, we propose to organize the
source samples in groups, and each group stands for one event-related semantic con-
cept. Given the groups for each event class, we can leverage these groups by assigning
different weights to different groups according to their relevance to target domain data.
Besides irrelevant source domain data, the intra-class variation of the target domain
videos also must not be overlooked. In other words, one piece of knowledge which is
irrelevant to one video may be useful to identify another video, even through both videos
belonging to the same event class. To deal with above problem, the relevance between
the source and the target should be measured not only according to the event class varia-
tion but also to the video itself. In this paper, we measure the relevance between a set of
the source groups and an individual target domain sample, the relevance are described
by using group weights. Instead of fix the group weight for every target domain sample,
we treat the weights as latent variables and try to optimize the group weights and the
group templates simultaneously in a latent structural learning framework.

As mentioned before, the knowledge on the Web is updating rapidly, one cannot
learn a fixed model for consumer video annotation once and for all. The emerging im-
ages and videos make the fixed model hard to be well generalized. Besides changes of
the Web data, continuously changes of users’ needs also require updating the classifiers
for annotating videos. An incremental transfer learning work is introduced by acquiring
new knowledge of new added data from both the source and target domain while re-
taining the knowledge learned before. Our incremental transfer learning work is based
on a latent structural model which minimizes the difference in a marginal probability
measure between the new added source and target domain data. To make the learned
model more stable on target domain data, we biasing the new target classifier close to
the hyperplanes of old ones during incremental process. At the same time, smooth as-
sumptions on two regularizers and different groups are imposed to enhance the target
classifier more adaptable to the target domain data.

Fig. 1 illustrates the framework of our method. The contributions of this paper are
three folds. (1) We develop a principle framework for annotating consumer videos by
incrementally updating the model using heterogenous sources. (2) We propose a la-
tent structural model by treating the groups weights as latent variables to capture the
relevance between the source domain groups and the target domain samples. (3) We
introduce two constraints in our incremental learning process by biasing the hyperplane
on the target domain close to those learn earlier.

1.1 Related Work

Recently, applying domain adaptation to multimedia content analysis has attracted more
attentions [1–4]. Yang et al. [7] proposed an Adaptive SVM method to learn a new
SVM classifier for the target domain, which is adapted from a pre-trained classifier
from a source domain. Duan et al. [8] proposed to simultaneously learn the optimal
linear combination of base kernels and the target classifier by minimizing a regularized
structural risk function. And then, they proposed A-MKL [9] to add the pre-learned
classifiers as the prior. Their methods mainly focus on the single source domain setting.
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To utilize numerous labeled source domain data, multiple source domain adaptation
methods [4, 10–12] are proposed to leverage different pre-computed classifiers learned
from multiple source domains. In these methods, different weights are assigned to dif-
ferent source domains without taking account of intrinsic semantic relations between
source domains. In this paper, we propose leveraging different groups of source do-
main training data according to their semantic meanings. We insure that the data in
each group are of the same concept, and different groups within the same event are
correlated to each other.

Several recent methods have been proposed to investigate the knowledge transform
from Heterogeneous domain adaptation methods. In [13], Web images are incremen-
tally collected to learn classifiers for action video recognition. Tang et al. [14] intro-
duced a novel self-paced domain adaptation algorithm to iteratively adapt the detec-
tor from source images to target videos. Duan et al.[4] developed a domain selection
method to select the most relevant source domains. In these existing works, the pre-
learned classifiers are primarily using training data from different source domains and
then the target classifiers are learned from pre-learned classifiers in a late-fuse fashion.
In contrast, our work can simultaneously learn the optimal classifiers and weights of
different source-domain groups to construct the target classifier in an incremental way.
[15] is closely related to our work, which deals with heterogeneous feature spaces and
aims at transferring knowledge from labeled source domain images and videos to unla-
beled target domain videos. However, in our method group weights are treated as latent
variables which can explicitly describe the contribution of different groups for different
target domain samples.

2 Problem Setting and Definitions

To obtain the Web images of the image source domain, we first manually define a se-
mantic concept collection as C = {C1, C2, ..., CG}, where Ci represents one event-
related concept. In this paper, we use 73 semantic concept keywords, including event
names (e.g. “play basketball”), action related concepts (e.g. “waving”), object related
concepts (e.g. “ball”), and scene related concepts (e.g. “basketball court”). For each
concept, a group of images are collected by querying a keyword to the Web image
search engine. And for action videos in the video source domain, videos are clustered
into groups according to their action labels in the corresponding datasets (e.g. “wav-
ing”, “running”, etc.). The image source domain and video source domain form the
source domain. Following this grouping strategy, and G groups of heterogeneous data
including web images and action videos consist the source domain, and each group is
represented by one type of features (i.e. image feature for the image source domain or
motion feature for the video source domain). As for the target domain, each consumer
video is represented by two types of feature: motion features (i.e. STIP features) ex-
tracted from the whole video, as well as image features (i.e. SIFT features) extracted
from the keyframes.

Formally, for each event class, we are given a set of groups {(xsgi , y
s
gi)|

Ng

i=1}, g ∈
{1, ..., G} including both images and videos from the source domain Ds, where Ng is
the total number of samples in the g-th group and xsgi is the i-th sample in the group with
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its label ysgi ∈ {−1, 1}. A set of pre-learned source classifiers fsg (x
s
g) = w̃′gϕg(x

s
g) are

learned by using the training data from each individual group. ϕg is the feature mapping
function for the g-th group. Also, we are provided with a set of unlabeled consumer
videos {xti|

Nt
i=1} from the target domain Dt.

In our setting of incremental learning, there are two types of information in the
source domain. First, we have a set of group classifiers fsg that are obtained from initial
G groups of images in the source domain. Since in incremental learning there is no ac-
cess to the samples used to train the initial source classifiers, we encoded these source
models as a set ofG hyperplanes represented in a matrix form as W̃ = [w̃1, w̃2, ..., w̃G].
Second, for every incremental stage, we are given a set of new Web images or action
videos from the source domain and a small set of consumer videos in the target do-
main. Our goal is to use the newly given source domain data to boost the annotation
performance on the newly given target domain videos. It should be noted that the newly
given source domain data may belong original groups or new groups, which means new
concept can be learned during the incremental transfer learning process.

3 Incremental Learning from Heterogeneous Sources

Unlike traditional multi-source adaptation methods, our method treats the combination
coefficients (group weights) of different groups as latent variable rather than fixes them
for each incoming target video. To this end, we learn the following target classifier f t

for any consumer video sample xti, which fuses the decisions from multiple sources
according to the latent weights:

f t(xti) =

G∑
g=1

w′gφ(θig , ϕg(x
t
i)), (1)

where wg is the template for the g-th group data; θig ,i ∈ {1, ..., Nt} and g ∈ {1, ..., G}
is the g-th latent group weight for consumer video xti, and ϕg is the feature mapping
function for the target video xti on the g-th group.

Once there are new target domain videos available, we update the target classifier
to make it more adaptable for these newly coming videos. In other words, the aim of
our incremental approach is to find a new combination (i.e. Θi = [θi1 , θi2 , ..., θiG ]) of a
new set of hyperplanes (i.e.W = [w1, w2, ..., wG]), such that (1) performance on newly
coming target data improves by transferring knowledge from both the original source
models and new source domain data, (2) efficiency of learning additional information
improves without any access to the original data used to train the existing classifiers,
and (3) the model is able to accommodate new event class introduced with new data.
Thanks to the development of the Internet, we can easily obtain new labeled source
domain data to incrementally update knowledge.

3.1 Learning

Although the explosion of Web data can bring new knowledge, the random noting and
subjective understanding of images make the noise images unavoidable. To prevent
negative transfer brought by the newly coming data, we enforce the new learned hyper-
planes W to remain close to the original hyperplanes W̃ using the term ‖W −βW̃ ‖2.
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This term enforces the target model W to be relatively close to the original model W̃ ,
using coefficient vector β = [β1, ..., βG]

T . Besides the constraints on the hyperplane,
we also enforce a smooth assumption on the single group decision value, i.e., different
group classifiers belonging to the same event should have similar decision values on
the target domain data. In our work, this constraint is implemented using the regularizer∑G
g=1 θig

∑G
k 6=g ‖wgfsg (xti)−wkfsk(xti)‖2. For example, if the g-th group and the k-th

group represent different concepts of the same event, we ensure that fks (x) should be
close to fgs (x). Actually, we introduce this term to penalize those groups far from major
event-related groups. For domain adaptation, we similarly assume that the pre-learned
classifiers in the source domain should have similar decision values on the unlabeled
samples in the target domain.

Since the group weights are treated as latent variables, our goal is to learn a predic-
tion rule of the following form:

f t(x) = argmax
Θ,y

F (x, y,Θ)

= argmax
Θ,y

W · Φ(x, y,Θ), (2)

where Φ(x, y,Θ) is a joint feature vector that describes the relationship among the input
consumer video x, output event class label y, and latent group weights Θ.

In order to learn the group weights Θi for each newly coming target video xti and
simultaneously update the group templates W , we introduce above constraints into a
latent structural objective function as follows:

min
W

1

2
‖W − βW̃ ‖2 +λ1

Nt∑
i=1

ξi + λ2

Nt∑
j=1

ζj , (3)

s.t. ξi = l(max
Θi

F (xti, y
t
i , Θi)−max

Θ̃i,ỹi

F̃ (xti, y
t
i , Θi)), (4)

ζj =

G∑
g=1

θjg

G∑
k 6=g

‖fsg (xtj)− fsk(xtj)‖2, (5)

G∑
g=1

θig = 1, (6)

where λ1, λ2 are tradeoff parameters. Here l(t) is the hinge loss function defined by
l(t) = max(0, 1 − t). We use this loss function to enforce the decision value of the
newly learned target classifier not far away from that of the original classifier. We argue
that such supervision is very important for our incremental adaptation problem. The
reason is two-fold: (a) There is a certain amount of overlap between the updated target
classifier and the original target classifier, so it is very possible that decisions on these
two types of classifier would not be too far from each other; (b) We do not have any
labeled data in the target domain, so the performance of updated classifier will become
much worse without having the constraints in Eq. 4. Our experiments demonstrate the
strength of this constraint.

The optimization problem in Eq. 3 can be solved in many different ways. In our im-
plementation, we adopt a non- convex cutting plane method proposed in [16]. First, it is
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easy to show that Eq. 3 is equivalent to minW L(w) = 1
2 ‖W−βW̃ ‖

2 +
∑Nt

i=1R(W )
where R(W ) is a loss function defined as

R(W ) =λ1l(max
Θi

F (xti, y
t
i , Θi)−max

Θ̃i,ỹi

F̃ (xti, y
t
i , Θi))

+ λ2

G∑
g=1

θgi

G∑
k 6=g

‖fsg (xti)− fsk(xti)‖2. (7)

The non-convex cutting plane method [16] aims to iteratively build an increasingly ac-
curate piecewise quadratic approximation ofL(W ) based on its sub-gradient ∂WL(W ).
The key issue here is how to compute the sub-gradient ∂WL(W ). We define

Θ∗i = argmax
Θ

F̃ (xti, y
t
i , Θi),∀y ∈ Y,

yt∗ = argmax
y

F̃ (xti, y
t
i , Θ

∗
i ). (8)

The inference problem in Eq. 8 will be described in Sec. 4.2. It is easy to show that
∂L(W ) can be calculated as follows:

∂WL(W ) =W − βW̃ +

Nt∑
i=1

ΘiΦ(x
t
i, y

t
i , Θi)

−
Nt∑
i=1

Θ∗i Φ(x
t
i, y

t∗
i , Θ

∗
i ) +

Nt∑
i=1

ΘiΩi. (9)

Here
Ωi = {Ω1

i , ..., Ω
g
i , ..., Ω

G
i } (10)

and

Ωgi =

G∑
k=1,k 6=g

φ(xti)(f
s
g (x

t
i)− fsk(xti)) (11)

Given the sub-gradient ∂WL(W ) according to Eq. 9, we can minimize L(W ) using
the method in [16].
3.2 Inference

Given the group templates W , we need to solve the following inference problem for
each target domain sample xti:

Θi = argmax
θig

G∑
g=1

w′gφ(θig , ϕg(x
t
i)) ∀y ∈ Y. (12)

As we know, the key issue of transfer learning approach is to measure the rele-
vance between the source domain data and the target domain data. Motivated by MMD
[17][18][19], we infer the group weights Θg = [Θi, ...ΘNt

] for the target domain sam-
ples by measuring the marginal probability distribution difference between two sets of
samples:

Θg = ‖
1

Ng

Ng∑
j=1

φ(xsgj )−
1

Nt

Nt∑
i=1

θgiφ(x
t
i)‖2H. (13)
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Algorithm 1 Incremental Heterogeneous Domain Adaptation.
Require:
{Xg}Gg=1: the set of source domain groups;
Xt : unlabeled target videos;
W̃ : original source domain hyperplane set;

Ensure:
W : Updated target classifiers;

1: repeat
2: Calculate F (·) and F̃ (·) for xti
3: Compute group smooth constraint Ωi

4: Infer the latent group weight Θi for xi according to Eq. (13)
5: until All target domain samples are involved
6: Use cutting plane method to minimize Eq. (3) to update W
7: return W

We stress that the criterion above is defined according to source domain groups which
are a subset of the source domain, as the sample mean is computed only on the semantic
related instances. This is much different from the other MMD approaches that have used
similar nonparametric techniques for comparing distributions. There they make stronger
assumptions that all data points in the source domain need to be collectively distributed
similarly to the target domain. Furthermore, in our inference problem, different weights
are assigned to different target domain samples. Our results below will show that these
differences are crucial to the success of our approach. Our incremental learning method
is summarized in Algorithm 1.

3.3 Datasets

We evaluate our method on two consumer video datasets: CCV [20] and Kodak [21].
CCV dataset contains a training set of 4, 659 videos and a testing set of 4, 658 videos
which are annotated to 20 semantic categories. Since our work focuses on event anno-
tation, we do not consider the non-event categories (i.e., “playground”,“bird”,“beach”,
“cat” and “dog”). In order to facilitate the keyword based image collection using the
Web search engine, the events of “wedding ceremony”, “wedding reception” and “wed-
ding dance” are merged into one event as “wedding”. The events of “non-music perfor-
mance” and “music performance” are merged into “performance”. Finally, twelve event
categories: “basketball”, “baseball”, “soccer”, “iceskating”, “biking”, “swimming”, “skin-
ning”, “graduation”, “birthday”, “wedding”, “show”, and “parade” are conducted in our
experiment.
Kodak dataset is collected by Kodak from about 100 real users over one year, con-
sisting of 195 consumer videos with their ground truth labels of six event classes (i.e.,
“wedding”, “ birthday”, “picnic”, “parade”, “show” and “sports”).

To construct clearly labeled source domain videos, we apply two widely used action
video datasets (i.e. KTH [5] and Weizman [6]).
KTH action video dataset contains six types of human actions: walking, jogging, run-
ning, boxing, hand waving and hand clapping. These actions are performed several
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times by twenty-five subjects in four different scenarios.
Weizmann action video dataset consists of about 90 low-resolution video sequences
showing nine different subjects, each performing 10 actions including bending, jump-
ing, running, skipping, galloping, walking and waving.

Web image dataset covers thirteen events: “basketball”, “baseball”, “soccer”, “iceskat-
ing”, “biking”, “swimming”, “graduation”, “birthday”, “wedding”, “skinning”, “show”,
“parade” and “picnic”. In our experiment, we use the Google image search engine to
collect images, and for each input keyword, the top ranked 300 images are downloaded
and the corrupted images with invalid URLs are discarded. Finally, total 76 event-
related semantic keywords are used to query images from Web image search engine
and 16, 708 images are collected.

3.4 Experimental Setup

For videos in both domains, we extract 162-dimensional 3D Space-Time Interest Point
(STIP) in which 72-dimensional Histograms of Oriented Gradient (HOG) and 90-dimensional
Histograms of Optical Flow (HOF) are extracted by using the online tool from [22].
For consumer videos in the target domain, we additionally extract image features by
randomly sampling five frames from each video as its keyframe and extracting 128-
dimensional SIFT features from salient regions on each frame detected by the Dif-
ference of Gaussians (DoG) detectors [23]. The bag-of-words representation is used
for both image and video features. Specifically, we cluster the SIFT descriptors ex-
tracted from all the training Web images and keyframes, into 2, 000 words by using k-
means clustering method. Each image (video keyframe) is then represented as a 2, 000-
dimensional token frequency (TF) feature by quantizing its SIFT descriptors with re-
spect to the visual codebook. Similarly, we cluster the STIP features extracted from
consumer videos and action videos into 2000 words using k-means, and the motion fea-
ture of each video is then represented by a 2000-dimensional token frequency feature.
Finally, two types of feature is used for videos in the target domain, and one type of
feature is sued for images and videos in the source domain, respectively.

To pre-learn a classifier for each group of each event, the positive samples are con-
structed by the samples belonging to the corresponding group in the corresponding
event class and the negative samples consist of randomly selected 300 samples in the
same type of any other groups. At the training stage, for the CCV dataset the training
set defined by [20] is used as the unlabeled target domain. For the Kodak dataset, all the
195 target domain videos are used as unlabeled training data. Consequently, the training
data includes the heterogeneous groups from the source domain and unlabeled videos
from the target domain.

We compare our transfer learning method with several state-of-the-art methods, in-
cluding the standard SVM (S SVM), the single domain adaptation methods of Do-
main Adaptive SVM (DASVM) [24], the multi-domain adaptation methods of Domain
Adaptation Machine (DAM) [25], Conditional Probability based Multi-source Domain
Adaptation (CPMDA) [26], Domain Selection Machine (DSM) [4] and Multi-domain
Adaptation with Heterogeneous Sources (MDA-HS) [15]. Since the S SVM can only
handle data from a single group, we merge the training samples represented by same
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type of features into one source to train SVM classifier. Consequently, two types of
SVM classifiers based on SIFT and STIP features are obtained for Web images and
action videos, respectively. The final S SVM classifier is obtained by equally fusing
these two types of source classifiers. For DASVM, which is semi-supervised learning
method and also cannot handle the multi-group setting, the target classifiers are trained
using the labeled source domain samples and the keyframes of unlabeled videos from
the target domain. Similar to S SVM, we employ the same fusing strategy to obtain the
target classifier for DASVM. The traditional multi-source adaptation methods CPMDA,
DAM and DSM can not directly handle the heterogeneous sources problem, so we per-
form these multi-source leveraging strategies on single feature type and then average
the decision values to obtain the final decision.

In our incremental learning setting, the source domain data is partitioned into two
parts: an initial set used for learning the initial source group classifiers and the remain-
ing sets added successively for updating. More specifically, about 3000 source domain
samples are used for updating the target model at each incremental stage. And for the
testing data, we evaluate the annotation performance on all the input target domain
videos (including the new videos in the current step and the videos used before). For
all the methods, Average Precision (AP) is used for performance evaluation and mean
Average Precision (mAP) is defined as the mean of APs over all event classes.

3.5 Results

We first compare our method with existing approaches and report the per-event APs of
all the methods on the CCV and Kodak datasets in Fig.2 and Fig.3, respectively. We
also show the mAPs of all methods on these datasets in Table 1.

Table 1. Comparison of mAPs (%) between our method and other methods on the CCV and
Kodak datasets.

Method S SVM DASVM [24] CPMDA [26] DAM [25] DSM [4] MDA [15] Ours
CCV 7.43 8.08 8.46 11.59 11.10 10.47 17.05
Kodak 12.95 17.78 21.58 30.25 23.38 25.18 35.63

From the results, we notice that:

– Our method achieves the best results on both datasets, which shows that our incre-
mental weighting strategy is beneficial to positive transform. Multi-source adapta-
tion methods (i.e. CPMDA, DAM, DSM, MDA and our method) generally outper-
form the single source methods (i.e. S SVM and DASVM), which clearly reveals
that it is helpful to weight different sources for knowledge transfer. The contribu-
tion of different sources may be different, by this means, the weighting strategy
becomes particularly important.

– Our method is better than MDA, which illustrates the benefit of using latent video-
specific weights for domain adaptation. A possible explanation is that the events in
real-world vary dramatically, so fixed group weights can not capture the relevance
information between different groups in various situations in every situation.
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Fig. 2. Per-event Average Precisions (APs) (%) of all methods on the CCV dataset.
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Fig. 3. Per-event Average Precisions (APs) (%) of all methods on the Kodak dataset.

– It is also interesting to notice that our method performs better than DSM, which in-
dicates that the data from all groups querying by associational keywords can benefit
understanding video events to some extend.

– In terms of per-event average precisions, there is no consistent winner among these
methods. This indicates the existence of the irrelevant data which hinds these trans-
fer learning methods to acquire good target classifiers. Our method achieves more
stable performance, which demonstrates that latent weighting strategy can effec-
tively cope with noisy data in the source domain.

We also investigate the effects of each constraint in our optimization function in
Eq. (3) for learning knowledge from the source. The column of θig = θjg reports the
performance of annotating when group weights for all the target video are equal. The
objective function is given by

min
W

1

2
‖W − βW̃ ‖2 +

1

2
‖ Θ ‖2 +

Ns∑
l=1

‖
G∑
g=1

fsg (x
s
l ))− ysl ‖2

+

Nt∑
j=1

G∑
g=1

θg

G∑
k 6=g

‖fsg (xtj)− fsk(xtj)‖2,

s.t.

G∑
g=1

θg = 1, (14)
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where θg stands for the group weights of the g-th group. In the objective function,
group weights are treated as explicit variable and simultaneously optimized with the
group templates W . As shown is the results, the annotation performance degrades dra-
matically when group weights are not treated as latent variables for each target domain
video. A possible explanation is that large intra-class variations within the same type
of events exist in the target domain videos, making their visual cues highly variable.
The relevance between the different groups and the individual target video cannot be
accurately represented by a unified group weight. The performance is degraded when
all groups are treated equally(θg = 1/G), which demonstrates that the contributions of
different groups are different to the target classifier. This further indicate the relevance
between the source and target is crucial for processing positive knowledge transfer.

Method θig = θjg θg = 1/G λ1 = 0 λ2 = 0 Ours

CCV 9.94 15.21 15.20 7.87 17.05
Kodak 32.81 15.09 29.3 28.72 35.63

Table 2. Evaluation on different components of the optimal function using mAPs (%).

Finally, we evaluate the efficiency of our incremental domain adaptation method.
Fig. 4 and Fig. 5 give the per-event comparison of non-incremental results and incre-
mental results on both datasets. Table 3 shows mAP and computational time in minutes
of our incremental method. As shown in the table, the non-incremental method de-
grades a lot, especially on the CCV dataset. A possible explanation is that the videos
in the CCV dataset are much more than those in the Kodak, which is more close to the
real-world situation. This also confirms our claim that the incremental method is more
suitable for modeling consumer videos.

Kodak CCV
mAP (%) Time (min) mAP (%) Time (min)

Non-incremental 31.90 14.19 7.25 54.32
Incremental 35.63 11.34 17.05 38.21

Table 3. The efficiency of our incremental method on the Kodak and CCV dataset.

4 Conclusion

In this paper, we have presented a new framework for consumer video event annota-
tion by leveraging a large number of freely available labeled sources(i.e. images from
Google and action videos from lab). By introducing a new incremental learning method
and a new latent weighting scheme, our method, called Incremental Learning with La-
tent Groups Weights, can simultaneously seek and update the optimal group weights
and group templates by using data from both domains. Comprehensive experiments on
two benchmark datasets demonstrate the effectiveness of our method for video event
annotation without requiring any labeled consumer videos.
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Fig. 5. Evaluation on the incremental efficiency on Kodak dataset.
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